… народные ветряки! Rotating Header Image

Книга “Самодельная ветроэлектростанция”

Б. КАЖИНСКИЙ, С. ПЕРЛИ

САМОДЕЛЬНАЯ ВЕТРОЭЛЕКТРОСТАНЦИЯ

В этой брошюре подробно описаны способы изготовлении самодельных ветродвигателей нескольких типов с диаметрами ветроколеса 1,6; 2,0; 2,5; 3,0; 4,0; 5,0 м, мощностью от 50 до 1000 Вт.

Получаемая от подобных установок мощность (при условии укомплектования аккумуляторами) достаточна для точечного электроосвещения, зарядки аккумуляторов радиосвязи и т. д.

Брошюра рассчитана на широкий круг читателей, в особенности на молодежь, интересующуюся радиозарядными установками.

Бернард Бернардовнч Кажинскмй

Семен Борисович Перли

ВВЕДЕНИЕ

В сельских районах, где нет электростанций, радиоприемники обычно питают от сухих элементов и батарей. Такие элементы и батареи стоят дорого и нередко через 3—4 месяца работы выбывают из строя. Поэтому целесообразнее использовать маломощную ветроэлектрозарядную установку с аккумуляторами, которую можно изготовить своими силами.

Например, с помощью наиболее простого ветродвигателя УД-1,6 можно приводить в движение генератор постоянного тока автотракторного типа. Такая ветроэлектростанция позволяет заряжать аккумуляторы для питания радиоприемника и к тому же освещать помещение одной — двумя электрическими лампочками автомобильного типа. Эта же самодельная ветроустановка может быть применена и для обслуживания электроэнергией физического кабинета сельской школы, а также всюду, где необходимо точечное освещение или, например, зарядка аккумуляторов автомашин.

Опыт показал, что даже в периоды самых слабых ветров— с июня по сентябрь — установка УД-1,6 может обеспечить работу одного и даже двух приемников типа БИ-234 или «Родина» по 4—5 часов в сутки.

Чтобы сделать ветродвигатель УД-1,6, достаточно оборудования простой колхозной кузницы и небольшой мастерской со сверлильным станком. Труднее всего сделать пружину, поэтому советуем использовать ее от старой сеялки или приобрести в магазине дверную пружину небольшого сечения.

Если придется изготовлять детали ветродвигателя из случайного материала или металлолома с отверстиями, то, чтобы установка не поломалась, отверстия эти не должны находиться в сильно нагруженных местах конструкции.

В тех сельских районах, где имеются хорошо оборудованные МТС или МТМ, снабженные электросварочными аппаратами, части ветродвигателя УД-1,6 изготовить легко.

Чтобы сделать более мощный ветродвигатель, например, для радиоузла или сельского клуба, нужна механическая мастерская. Для постройки ветродвигателя можно использовать детали от старых автомашин или трактора. Строителям, недостаточно знающим слесарные и электротехнические работы, следует обращаться за консультацией к специалистам МТС, шоферам и автомеханикам.

Ветродвигатель — это силовое устройство, подверженное стихийному воздействию ветра. Он должен быть прочным и безопасным для людей. Поэтому при постройке ветростанции обязательно следует соблюдать указанные в брошюре размеры деталей и, если изменять их, то только в сторону увеличения. Все указанные в брошюре детали и болты проверены расчетами на прочность, размеры их поставлены только после длительной проверки в эксплуатационных условиях на множестве построенных машин. Рекомендуется обязательно ставить боковую лопату, чтобы ветродвигатель во время бури сам уходил в защитное положение и не был разрушен. На ветродвигателях с диаметром ветроколеса более 2 м обязательно должен быть установлен механизм, ограничивающий обороты по одному из указанных в брошюре способов.

На обложке приведен общий вид самодельной ветростанции с двукрылым ветроколесом диаметром 2 м, работающей с 1946 года в с. Огульцы, Харьковской области, Вальковского района.

СОДЕРЖАНИЕ

Общие сведения

Простейшая ветроэлектростанция УД-1,6

Ветроустановки большей мощности

Пуск станции в эксплуатацию

Расчеты основных параметров ветряка

Как и за счет каких источников человечество собирается покрывать всё возрастающие затраты энергии? Даже если энергетического кризиса удастся избежать, мир рано или поздно столкнется с тем, что запасы невозобновляемых сырьевых ресурсов – нефти, газа и угля – будут исчерпаны. Чем активнее мы их используем, тем меньше их остается и тем дороже они нам обходятся. По расчетам специалистов, при нынешних объемах добычи угля на Земле хватит лет на 400-500, а нефти и газа – максимум на столетие. К тому же опустошение земных недр и сжигание топлива уродуют планету и год от года ухудшают ее экологию. Одним словом, перед человечеством стоит задача освоения экологически чистых, возобновляемых, или, как их еще называют, нетрадиционных, источников энергии. Среди них лишь энергия Солнца и ветра поистине неисчерпаема и не вносит практически никаких изменений в природу.

Не так давно мы рассказывали о солнечной энергетике (см. журнал Наука и жизнь № 12, 2002 г.). На очереди – ветроэнергетическая отрасль. Речь пойдет о достижениях мировой ветроэнергетики и перспективах ее развития в России. (далее…)

Ветровая энергия по регионам РФ

Для регионов с меньшей среднегодовой скоростью ветра – предлагаются МикроГЭС бассейнового, водостолбового и испарительного типа.

На бытовом уровне понятие сильный ветер – не совсем определенно. Для ветрогенератора обычного типа (не парусного) требуется, например, ветер не меньше 4 метров в секунду, что не так-то и мало, если Вы не живете в окрестностях Петербурга. Можно отправить потенциального клиента к региональным синоптикам или просто опубликовать шкалу Бофорта. Но практика показала, что этого недостаточно. (далее…)

Воздушный солнечный обогрев

Традиционные системы обогрева на угле, жидком топливе трудоемки, неудобны и более всего загрязняют отходами природную среду. Чтобы этого избежать, надо использовать систему обогрева, которая не требует много топлива, а в доме при этом тепло и уютно. Это можно сделать за счет накопления летней энергии, ее сохранения и последующего использования зимой.

При этом система теплообеспечения должна быть дешевой, простой при изготовлении и надежной в эксплуатации.

В качестве основного источника энергии для обогрева экодома надо использовать солнце и незначительное количество растительного топлива (солома, дерево, биогаз) для приготовления пищи и в критических ситуациях. В определенных местах, где есть возможность, целесообразно использовать энергию ветра и воды. Кроме того, в некоторых местах можно использовать геотермальные источники. Единственный источник энергии, который есть везде – это солнце.

(далее…)

Предварительные результаты испытаний генератора

Испытания генератора в самом разгаре, а мы торопимся показать некоторые результаты. Публика в нетерпении и это приходится учитывать.

Нужно сразу оговориться, что макет, выполненный для испытаний, оставляет желать лучшего, поскольку нам пришлось «на ходу» менять исполнителя работ. Статор с катушками сделали из фанеры и добиться хорошей точности не удалось. Это повлекло за собой увеличение зазоров между магнитами и катушками. Само собой стало понятно что показатели будут занижены. Но ради скорости решили первые эксперименты провести с таким статором, а тем временем изготовить текстолитовый, и потом уточнить характеристики.

Еще одна проблема – двигатель для стенда. Двигатель с редуктором, который готовили на стенд оказался неработоспособным. Заказали новый, а тем временем приладили дрель через ременную передачу (примерно 1:5) и решили испытывать каждую фазу отдельно.

В качестве нагрузки использовали сопротивления из нихромовой проволоки. Такую используют при изготовлении «козлов». И другой вариант для наглядности – батарея из ламп накаливания (5х100 Вт).
Сам генератор имеет 32 магнита (по 16 на каждом магнитопроводе) и 12 катушек намотанных медным проводом Ǿ 0,75 мм. по 200 витков. Катушки разбиты на три фазы, по 4 катушки в фазе. Магниты N-Fe-B Ǿ 40 мм. и толщиной 5 мм.

Генератор, после некоторой отладки, заработал и показал следующие характеристики при измерениях в одной фазе:

Ток, А

Частота, Гц

Напряжение, V

1
A

32

38,3

64

76,5

98

116

4 А

32

26,2

64

52,3

Нужно пояснить, что частота фиксируемая прибором, прямо связана с оборотами. Поскольку генератор имеет 16 полюсов, то несложно определить истинную скоростьГрафик (испытания генератора) вращения – примерно 120, 240 и 380 об/мин. Под нагрузкой 4 А мощности дрели не хватило, чтобы довести обороты выше 250 об/мин. Полученные данные усреднялись по 10-12 измерениям.

Сравнение экспериментальных данных и результатов расчетов показали хорошую сходимость (около 5%). Таким образом можно считать, что методика расчетов не содержит серьезных ошибок.

Если полученные данные экстраполировать на генератор проектных размеров (24 полюса с такими же катушками) и построить график, то выглядеть он будет следующим образом (см. рисунок). Черные линии это характеристика в таком же качестве что и наш макет, а синие линии это характеристики по расчету и скорее всего при нормальном серийном изготовлении.

Если «приложить» этот график к ветряку, то можно ожидать, что при скорости ветра 6,5 м/с ветрогенератор сможет вырабатывать около 3 кВт. Единственный вопрос, который нужно уточнить при натурных испытаниях – размеры лопастей. Возможно их придется увеличить.

Полученные предварительные результаты вселяют в нас уверенность и мы готовим производство!