Без энергии невозможна никакая деятельность каждого человека в отдельности и человечества в целом. По сути дела, любая деятельность человека является деятельностью экономической, так как экономика – это процесс обмена между людьми порциями энергии или их информационными отражениями в виде так называемой стоимости, ибо стоимость – это информация о затраченной на производство товара или услуги энергии. За последние 30-35 лет потребление энергии в мире удваивается каждые 10 лет, этим подтверждается, что научно-техническое и экономическое развитие – это, прежде всего, развитие энергетическое.
Будет прирост энергии – будет и прирост ВВП, нехватка энергии находит своё отражение в так называемых финансовых и экономических кризисах. Люди пытаются найти причину таких кризисов в чем угодно, но только малое число экономистов и политических деятелей понимают роль энергии в экономических и финансовых катаклизмах последних 20 лет. Те, кто не понимает роль энергии, решает экономические проблемы уничтожением «лишнего» населения в военных конфликтах. Тот же, кто понимает толк в энергетике, решает экономические проблемы через научно-техническое развитие, важной составной частью которого является развитие энергетического комплекса.
Увеличивающееся энергопотребление в течение последних десятилетий удовлетворяется в основном за счет использования традиционных энергоносителей – угля, нефти, газа, торфа, воды (гидроэнергетика) и атомной энергии. Быстрый рост энергопотребления, паника на рынках энергоносителей в виде резкого удорожания топлива и энергии, обострение геополитических, экономических и экологических проблем топливно-энергетического комплекса (ТЭК) требуют более обоснованной и тщательной проработки принципов использования природных ресурсов и стратегии развития энергетики. Поэтому с каждым годом все более актуален поиск и освоение альтернативных нетрадиционных источников энергии, к которым, в частности, относится ветроэнергетика.
Доля нетрадиционных возобновляемых безтопливных источников энергии (солнечной, ветровой, геотермальной, малых водных потоков и др.) в общем объеме мирового производства электроэнергии составляла в 2006 году около 2%. При этом, просто смешно, в Российской Федерации эта доля составляла доли процента. Одновременно Россия может гордиться своей отсталостью хотя бы в том, что более семидесяти процентов электроэнергии вырабатывается на тепловых станциях, работающих на мазуте или угле. И это тогда, когда запасы углеводородов (угля, нефти и газа) таят буквально на глазах, а половина добытой нефти и газа прямиком идет за рубеж нашим историческим конкурентам, с которыми у России может в будущем возникнуть военных конфликт. По оценкам специалистов российские запасы нефти иссякнут приблизительно через тринадцать лет, а запасы газа – через шестьдесят лет.
Все установки, перерабатывающие кинетическую энергию прямолинейного движения массы ветрового потока в энергию вращения ротора генератора с последующим превращением ее в электрическое напряжение на выходных клеммах электронного инвертора, делятся на несколько типов. Основными из них являются ВЭУ с горизонтальной и вертикальной осью вращения. Согласно международным стандартам (IEC 61400, Требования по Ллойду) мощность ВЭУ принимается за номинал на скорости ветра 11.4 м/сек. КПД ветроэнергетической установки (эффективность использования энергии ветра) – величина, показывающая, сколько процентов энергии ветра ветро-ротор отбирает и передает на генератор. Эту величину принято считать КПД ВЭУ (КИЭВ – коэффициент использования энергии ветра), хотя на самом деле это КПД ветро-ротора (ветроколеса). Реальный КПД всей ветроустановки установки можно подсчитать, приняв во внимание КПД генератора (70-90%), КПД инвертора (если таковой имеется, 80-90%) и КПД передачи энергии на расстояние.
Лопастные ВЭУ с горизонтальной осью вращения легко сделать, если мощность ВЭС не превышает 10 кватт, но при увеличении мощности ВЭУ возникают большие технические сложности. Этот тип установок получил наибольшее (традиционное) распространение в связи с рядом причин: наибольшая эффективность (КПД) использования ветра (до 42% на практике, но только при наличии должного направления ветра) по сравнению с другими конструкциями, благодаря «подъемной силе» крыла; традиционность мышления людей, принимающих решения. Среди ВЭУ с горизонтальной осью вращения существуют несколько подтипов – крыльчатые (лопастные) различных конструкций, с эффектом Магнуса, и другие. Самые известные своей эффективностью являются крыльчатые лопастные ВЭУ.
Однако у лопастных ВЭУ с горизонтальной осью вращения имеются один, но очень существенный недостаток – заметная инерционность при ориентировке на ветер. Изобретатели, разработчики и фирмы-производители сознательно замалчивают этот факт от потребителя, информируя его только о достоинствах установки, которые проявляются только в аэродинамической трубе, т.е. в специально созданных условиях. Но на деле же получается следующее. Мощность ВЭУ рассчитывается, исходя из того, что направление ветра всегда совпадает с осью вращения ветро-ротора, т.е. ветер дует непосредственно на расчетную поверхность лопастей. В результате получается расчетная мощность ВЭУ. Однако из жизни известно, что направление ветра не является константой, ветер постоянно меняет свое направление. Скорость изменения направления ветра во много раз превышает реакцию лопастных ветроустановок в ответ на изменение направления ветра. В итоге создается ситуация, когда лопасти вращаются просто по инерции в то время, когда ветер дует перпендикулярно оси вращения лопастей.
У мощных лопастных ветряков система управления изменяет направление флюгера, если ветер в новом направлении дует более 15 сек. Если поток воздуха будет менять свое направление с интервалом менее 15 сек, то ветряк просто не меняет своего направления. Следовательно, лопасти могут перестать вращаться. Да и в том случае, если направление ветра меняется с интервалом более 15 секунд, нет никакой гарантии, что после поворота ветряка ветер к этому моменту будет дуть во вновь выбранном направлении. При повороте лопастей начинают проявляться силы Кориолиса, будет сказываться инерция всей гондолы с генератором, редуктором и т.д. При высокой частоте вращения лопастей выявляются малейшие неточности в центровке лопастей, неравномерность мощности ветра по высоте, что ведет к поломке лопастей или разрушению всей ветроэнергоустановки.
Существенным недостатком является сложность технологического процесса производства лопастей, т.к. профиль лопасти (винта) не является одинаковым по сечению вдоль ее длины. Начиная с 3 кВт, такие ВЭУ требуют специальное раскручивающее устройство, т.е. стартовать сами такие установки не могут. Это приводит к усложнению системы старта и управления, а значит, к удорожанию ВЭУ. На Западе много влияния уделяется тому факту, что ВЭУ с горизонтальной осью вращения являются опасными для птиц. Это происходит в связи с тем, что внешняя часть лопасти движется быстрее, чем внутренняя и птицы не могут своевременно «рассчитать» ее скорость, чтобы увернуться. ВЭУ большой мощности становятся источниками инфразвука, который оказывает негативное воздействие на людей и животных, может вызывать появление нежелательных колебаний в близко расположенных зданиях, вплоть до их разрушения. (далее…)
Для отправки комментария необходимо войти на сайт.